2017 43rd Euromicro Conference on Software Engineering and Advanced Applications

A Domain-Specific Language for Coordinating
Collaboration

Christoph Mayr-Dorn
Institute for Software Systems Engineering
Johannes Kepler University, Linz, Austria
Email: christoph.mayr-dorn @jku.at

Abstract

Manually managing collaboration becomes a problem in distributed soft-
ware engineering environments. Individual engineers easily loose track of
who to involve and when. The result is lack of communication, alternatively
communication overload, leading to errors and rework. This paper presents
a Domain-Specific Language (DSL) for scripting of collaboration structures
and their evolution. We demonstrate the DSL’s benefits and expressiveness for
setting up an iteration planning meeting in an agile development setting.

1. Introduction

Development of non-trivial software is typically a collabora-
tive effort — regardless of whether a rigid waterfall process or
agile methods are followed. A plethora of engineering support
tools focus on collaboration around joint tasks or software
artifacts [1] - most of them requiring the engineers to take
initiative in managing the collaboration.

Manually managing collaboration becomes a problem in
complex engineering setting, especially when teams are distri-
buted [2]. Take a distributed agile team as an example where
customer, business analysts, and developers are no longer co-
located but need to collaborate on vital activities such as an
iteration planning meeting (IPM). Individual engineers loose
track of who to involve [3], for what purpose, and for what
duration. The result is lack of communication, respectively,
communication overload, leading to errors and rework.

We propose a Domain-Specific Language (DSL) for coor-
dinating collaboration. Our DSL enables scripting of collabo-
ration structures and their evolution: specifying for individual
tasks which collaboration mechanisms to use, who to involve,
and what collaboration-specific capabilities the participants
have. Example collaboration mechanisms employed in Soft-
ware Engineering (SWE) are wikis, chat rooms, collaborative
document editors, issue tracking, or source code version cont-
rol systems. Previous work focuses on revealing collaboration
post-hoc, respectively focuses on managing tasks. Our appro-
ach aims for a complementary view for coordinating collabo-
ration alongside any process-centric engineering methodology.

2. Scripting Collaborations

We propose to support collaboration in SWE environments
through a DSL that simplifies setting up collaboration struc-
tures. The DSL has the primary purpose to:

978-1-5386-2141-7/17 $31.00 © 2017 IEEE
DOI 10.1109/SEAA.2017.33

57

Christoph Laaber
Department of Informatics
University of Zurich, Switzerland
Email: laaber@ifi.uzh.ch

o address collaboration participants (e.g., identify and con-
tact engineers to participate in an IPM),

« configure collaboration mechanisms (e.g., setting up a
chat or wiki page),

« navigate across the relations among process artifacts (e.g.,
identify test cases that link to a user story on a wiki page),

« manipulate the relations among collaboration mecha-
nisms (e.g., link a chat room to a user story),

« as well as manipulate the participants’ collaboration ca-
pabilities (e.g., make the Scrum master the moderator of
a chat room).

Creating a DSL that is able to integrate arbitrary collabo-
ration mechanisms is challenging. The various collaboration
mechanisms come with different collaboration semantics —
consider the difference between chatting, artifact editing, and
issue assigning. In addition, collaboration tools take different
conceptual approaches to providing an API. Our DSL supports
the scripting effort by abstracting from low-level, technical
tool APIs and high-level collaboration semantics through a
common representation (i.e., hADL, the human Architecture
Description Language [4]). With hADL, we specify the buil-
ding blocks (e.g., the roles, the collaboration mechanisms,
what collaboration capabilities these mechanisms offer to
individual roles, ...) from which to build a collaboration
structure. Our scripting environment then uses hADL models
to ensure correct construction of collaboration structures while
remaining completely independent from any particular hADL
model instance.

Figure 1 depicts the high-level approach for using our DSL.
Our approach considers three roles. The Script Author loads
a hADL model within the DSL Scripting Environment. Any
stakeholder in the engineering process may assume the role of
script author, for example the Scrum master. While scripting,
the environment continuously checks the script for compliance
with the hADL model, assists through model-centric script
completion, and generates for correct script segments the cor-
responding Java code. At runtime, the (potentially automated)
Script Activator role triggers this Java code, which in turn calls
the hADL Runtime Framework [5]. The execution framework
in turn interacts with the actual collaboration tools and contacts
the Collaboration Participants. A stakeholder might assume
multiple roles at the same time. For example, the Scrum master

cps™

Conference Publishing Servicas

Authorized licensed use limited to: Universitaet Linz. Downloaded on March 08,2021 at 12:36:14 UTC from IEEE Xplore. Restrictions apply.

might author the IPM script, activate the script prior to the
meeting, and ultimately become involved as a chat participant.

hADL model of
collab mechanism

v)
@
DSL Scripting E’
environment > 8
3]
Script Author y Y —
Collaboration Java
script Representation -/
™\
)]
£
> g
hADL runtime client Ly hADL RT » =
(e.g., BPMN, CMMN) Framework ~
Script Activator i g)
[] @ v '*§
Collaboration Tools 2
(e.g, Bitbucket, HipChat, ...) °
Collaboration Participants 8

Fig. 1. Approach for scripting of collaboration structures.

2.1. DSL Elements

We introduce the DSL elements based on script excerpts.
Listings print DSL keywords in colored, bold font and hADL
model instance types in italics.

2.1.1. Tasks. The script file is the implicit top-level DSL
element. It contains a collection of Tasks. A task represents
a logical step for coordinating collaboration and to this end
composes multiple fine-grained, interdependent collaboration
structure changes. A task’s complexity ranges from simply
setting up a chat room to preparing a complete IPM.

Listing 1 exemplifies the general structure of a task de-
finition. Tasks have a name (linel), an optional set of input
parameter declarations (line 2-4), a body of statements (line 5-
7), and, finally, a set of optional output parameter declarations
(line 8). A collaboration script typically consists of one or
more tasks, e.g., one each for creating a chatroom, adding
chatroom participants, and tearing down the chatroom.

2.1.2. Input, Output, and Local Variables. Input parameters
specify what information a task requires. The DSL distinguis-
hes between primitive Java type parameters and hADL type
parameters to support hADL model-backed validity checks
and code completion. The former allow the script activator
to customize hADL elements, for example, passing a string
to be used as the topic of a chatroom. The latter enables
passing in hADL element instances that were created in a
preceding script task. For example, for adding participants to
a preexisting chatroom, the script activator passes the chatroom
hADL instance together with the participant hADL instances.
The hADL model element’s id (e.g., scrum.obj.ChatRoom)

58

serves as type information. Square brackets around parameters
indicate lists.

A local variable (keyword var) stores intermediary results
for further processing, navigation, iteration, and ultimately
output. Output parameters specify what a task will pass
back as a result of successful execution. The DSL supports
hADL type output parameters only. In the example Listing 1
line 6, the variable 1inks collects the CollaborationLinks
(of type scrum.links.Chatting) established when adding new
participants to the chat room.

task change_chatroom {
in nUsers : [scrum.roles.ChatUser]
in room : scrum.obj.ChatRoom
javaIn topic : String

var links : [scrum.links.Chatting]

1
2
3
4
5
6
7
8

out links as "membership" }

Listing 1. Example Variable, Input, and Output

2.1.3. Manipulation Primitives. The DSL provides mani-
pulation primitives (see Listing 2) for setting up, changing,
and tearing down a collaboration structure. The acquire
keyword obtains a new hADL element instance of given type
using a resource descriptor (line 1). In our example, the
resource descriptor rd contains the chatroom’s topic and pri-
vacy settings. Eventually, the script author uses the release
keyword to remove a hADL instance, here tearing down the
chatroom (line 2).

Adding an engineer to a chatroom or making an engineer
the editor of a wikipage occurs via the 1 ink keyword (line 4).
The script editor specifies the human component instance, the
collaboration object to link to, and the collaboration link type.
The DSL automatically restricts the link type to valid ones. For
example, given that alice is of type scrum.roles.ChatUser, only
the link type scrum.links.Chatting would be selectable. The
unlink keyword removes the link, here effectively removing
alice’s chatroom membership (line 5).

Establishing and removing collaboration references hap-
pens in the same manner as manipulating collaboration links
but involves two collaboration object instances. Here, line 7
establishes a reference between a task and a wikipage,
subsequently removed on line 8.

acquire scrum.obj.ChatRoom with rd as chatRooml
release chatRooml

link alice and chatRooml by scrum.links.Chatting as
chatLinkl
unlink chatLinkl

reference from taskl to wikiPage2 with
scrum.rel.HasOutput as refl
dereference refl

o NN AW~

Listing 2. Example use of Manipulation Primitives

2.1.4. Navigation and Iteration. Navigating a collaboration
structure (see Listing 3) allows the script author to select

Authorized licensed use limited to: Universitaet Linz. Downloaded on March 08,2021 at 12:36:14 UTC from IEEE Xplore. Restrictions apply.

connected hADL elements without having to address each one
with a dedicated acquire operation and explicit resource
descriptor. Line 1 exemplifies how to retrieve all tasks contai-
ned in a particular sprint. Line 2 demonstrates how to chain
multiple references to obtain all wikipages related to a sprint.
Our DSL supports navigation across collaboration links and
references.

The DSL scripting environment supports the script author by
providing a choice of valid collaboration links and references.
This reduces the mental effort of the script author when
defining navigation paths across intermediate object types.
After navigating to and loading a set of hADL element
instances, the script author may iterate over these elements
in a for all loop. All DSL statements are available within
the loop’s body. Listing 3 (lines 4-10) demonstrates how to
obtain all editors of a wikipage and adding them to a chat
room.

1 startingFrom sprintl load scrum.obj.ScrumTask:
scrum.rel.ContainsTask as tasks

2 startingFrom sprintl via scrum.obj.ScrumTask:
scrum.rel.ContainsTask load scrum.obj.WikiPage:
scrum.rel.HasOutput as pages

var chatMemberships : [scrum.links.Chatting]
startingFrom page load scrum.roles.ScrumUser:
scrum.links.EditingPage as editors
for all editors as editor {
acquire scrum.roles.ChatUser with editor.RD as
chatUserl
link chatUser and chatRooml by scrum.links.Chatting
as chatLinkl
add chatLinkl to chatMemberships }

O 0 NN kW

Listing 3. Example use of Navigation and lteration

2.1.5. DSL Tool Support and Script Integration. We im-
plemented the DSL with the Eclipse-based XText framework.
It provides a basic DSL parser, linker, compiler, and type-
checking infrastructure. Aside from specifying the DSL gram-
mer, our main effort focused on providing model-centric DSL
code auto-completion, syntax proposals, constraint validation,
and Java code generation.

The resulting scripting environment produces a Java class
for each script, where each DSL Task becomes a method
accepting the specified input parameters. To accommodate
multiple task output parameters, the Java method returns
output as parameter/value pairs in a map. Triggering a task
becomes simply invoking the corresponding method.

3. Case Study

Our case study demonstrates the DSL’s expressiveness for
setting up complex collaboration structures. Specifically, we
show a detailed example script for realizing part of an ex-
emplary iteration planning meeting. Second, the case study
demonstrates that it is technically possible to script (and
with the help of the hADL runtime framework also execute)
collaboration setup, manipulation, and tear down actions. DSL
and scripting environment including validity checks, models,

59

as well as hADL runtime plugins are outlined in further
detailed at goo.gl/Ex4GHu.

We support the core Scrum elements through (reusable)
plugins for the hADL runtime framework for Agilefant, Bit-
bucket, HipChat and Google Drive Documents.

For our use case, we assume that the spatially distributed
agile team members utilize a dedicated ScrumTask as container
for all meeting preparations. Analysts (in the role of Scru-
mUser) collect test scripts in WikiPages. These wiki pages
link to the documents where domain experts (in the role of
DocUsers) sketch out the stories.

The preparation ScrumTask serves as entry point for the
script in Listing 4 (line 2,5). Additional required input is
the topic and the wiki page name for the IPM’s chatroom,
respectively meeting minutes (line 3,4,7,8).

From the entry task, the script retrieves the owning masters
(line 8) and adds them as owners of the [IPM’s minutes (line 9-
10). Also from the entry task, the script navigates to all linked
wiki pages, i.e, containing test scripts (line 11), to retrieve
their editors (line 13) and adds them as chat participants (line
14-16). From the wiki pages, the script also navigates to the
associated documents, i.e. containing the story sketches, and
similarly adds the document owners as chat participants (line
17-20). Ultimately, the script returns the created chat room
and list of organizers (line 21-22).

1 task setupIPM {

2 javaIn ipmPrepTaskId : Integer

3 javaln chatTopic : String

4 javaIn minutesPage : String

5 acquire scrum.obj.ScrumTask with
RDFactory.agilefant (ipmPrepTaskId) as
ipmPrepTask

6 acquire scrum.obj.WikiPage with RDFactory.bitbucket
(minutesPage) as minutes

7 acquire scrum.obj.ChatRoom with RDFactory.hipChat (
chatTopic) as ipmChat

8 startingFrom ipmPrepTask load

scrum.roles.ScrumMaster:
scrum.links.MasterEditingTask as masters
9 for all masters as master {

10 link master and minutes by scrum.links.OwningPage

as owningPageLink }

11 startingFrom ipmPreptask load scrum.obj.WikiPage:
scrum.rel.HasOutput as pages

12 for all pages as page {

13 startingFrom page load scrum.roles.ScrumUser:
scrum.links.EditingPage as editors

14 for all editors as editor {

15 acquire scrum.roles.ChatUser with editor.RD as
chatUserl

16 link chatUserl and ipmChat by
scrum.links.Chatting as chatLink }

17 startingFrom page via scrum.obj.WikiPage:
scrum.rel.DependsOn load scrum.roles.DocUser:
scrum.links.OwningDoc as docOwners

18 for all docOwners as owner {

19 acquire scrum.roles.ChatUser with owner.RD as
chatUser2

20 link chatUser2 and ipmChat by
scrum.links.Chatting as chatLink }}

21 out ipmChat as "ipmChatRoom"

22 out masters as "organizers" }

Listing 4. IPM Setup Script
The DSL provides three main benefits. First, the script
author can focus on defining the collaboration structure wit-

Authorized licensed use limited to: Universitaet Linz. Downloaded on March 08,2021 at 12:36:14 UTC from IEEE Xplore. Restrictions apply.

hout having to know tool-specific implementation details. S/he
requires only minimal, high-level collaboration tool know-
how (i.e., how to correctly create the resource descriptors) to
devise complex collaboration structures. The abstraction from
the underlying collaboration tools provides the opportunity to
replace these tools without having to rewrite the scripts. A
company could thus more easily switch from, for example,
HipChat to Slack.

Second, scripts capture collaboration best practices (e.g.,
how to identify and involve relevant people and artifacts for
an IPM meeting) and thus are ideal to capture otherwise
tacit knowledge. We acknowledge that learning the DSL and
writing DSL scripts requires a non-negligible effort. This effort
pays off quickly when several teams within a larger software
development organization share and reuse these scripts. In a
large company such as Google with thousands of teams the
DSL, thus, provides a means to spread and harmonize this
tacit collaboration know-how.

Third, the DSL provides suggestions what collaboration
manipulation actions are available from a given collaboration
element respectively ensures that only valid elements are
selected. In the example script in Listing 4 the DSL conducts
24 validity checks, a significant amount of otherwise mental
checks even in such a short script.

4. Related Work

Over the last two decades, the software engineering com-
munity repeatedly investigated the need for combining process
technology and collaboration support [6], [7]. Supporting
communication and coordination in distributed engineering
settings, however, remains a serious challenge [8].

In recent work, Zhao et al. apply Little-JIL for describing
fine-grained steps involved in refactoring [9]. While this ap-
proach captures which artifacts were changed by what rework
activity, the involved participants and collaboration dependen-
cies remain implicit. Kedji et al. [10] provide a collaboration-
centric development process model and corresponding DSL.
Their DSL focuses on roles and work assignments using arti-
facts; however no other collaboration mechanism is supported.
A major additional difference is, we don’t aim to establish
authoritative data but restrict ourselves to integrating existing
tools. The GENESIS environment [11] integrates collaboration
tools but doesn’t allow control over the collaboration mecha-
nisms themselves. Esfahani et al. [12] introduce agile method
fragments which include collaborative activities such as pair
programming, daily meeting, or inspection. These fragments
are not executable and don’t specify the topology of the cor-
responding collaboration structures. In general, collaborative
development environments often integrate, among other tools,
issue management, tasks and collaboration mechanisms [13].

In summary, existing approaches are unable to support
collaboration beyond accessing engineering artifacts within an
integrated engineering environment. To the best of our know-
ledge, our DSL is the first attempt at scripting of collaboration
structures in software engineering settings.

60

5. Conclusions

We made the case for supporting the scripting of col-
laboration structures in software engineering environments.
Even highly agile settings such as Scrum processes benefit
from prepared scripts. These reduce the risk of, for example,
overlooking relevant collaboration participants or artifacts as
may happen in purely ad-hoc, human-driven collaborations.
Our DSL and scripting environment utilize hADL models for
assisting the script author in correctly creating, modifying, and
tearing down complex collaboration structures.

The current DSL contains the basic features for collabo-
ration scripting. Further evaluation in the field is required to
understand what advanced features software engineers might
find useful. Future work also includes exploration how to auto-
matically integrate the generated Java code with development-
centric tools.

Acknowledgments

This work was supported by the Austrian Science Fund
(FWF): P29415-NBL funded by the Government of Upper
Austria.

References

[1] J. Portillo-Rodriguez, A. Vizcaino, M. Piattini, and S. Beecham, “Tools
used in global software engineering: A systematic mapping review,”
Information and Software Technology, vol. 54, no. 7, pp. 663-685, 2012.
I. Mistrik, J. Grundy, A. Van der Hoek, and J. Whitehead, “Collabora-
tive software engineering: Challenges and prospects,” in Collaborative
Software Engineering. Springer, 2010, pp. 389—403.

A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative
approach to identifying expertise,” in Proc. of the 24th Int. Conf. on
Software Engineering. ACM, 2002, pp. 503-512.

C. Dorn and R. N. Taylor, “Architecture-Driven Modeling of Adaptive
Collaboration Structures in Large-Scale Social Web Applications,” in
WISE, LNCS vol. 7651. Springer, 2012, pp. 143-156.

C. Mayr-Dorn and S. Dustdar, “A framework for model-driven
execution of collaboration structures,” in Proc. of Int. Conf. on
Advanced Information Systems Engineering , CAISE 2016, LNCS vol.
9694. Springer, 2016, pp. 18-32.

P. Barthelmess, “Collaboration and coordination in process-centered
software development environments: a review of the literature,” Inf.
and Softw. Techn., vol. 45, no. 13, pp. 911 — 928, 2003.

V. Ambriola, R. Conradi, and A. Fuggetta, “Assessing process-centered
software engineering environments,” ACM Trans. on Software Engineer-
ing and Methodology (TOSEM), vol. 6, no. 3, pp. 283-328, 1997.

B. Sengupta, S. Chandra, and V. Sinha, “A research agenda for distribu-
ted software development,” in Proc of Int. Conf on Software engineering.
ACM, 2006, pp. 731-740.

X. Zhao and L. Osterweil, “An approach to modeling and supporting
the rework process in refactoring,” in /CSSP, june 2012, pp. 110 —119.
K. A. Kedji, R. Lbath, B. Coulette, M. Nassar, L. Baresse, and
F. Racaru, “Supporting collaborative development using process models:
An integration-focused approach,” in ICSSP, 2012, pp. 120-129.

L. Aversano, A. De Lucia, M. Gaeta, P. Ritrovato, S. Stefanucci, and
M. Luisa Villani, “Managing coordination and cooperation in distributed
software processes: the genesis environment,” Software Process: Impro-
vement and Practice, vol. 9, no. 4, pp. 239-263, 2004.

H. C. Esfahani and E. Yu, “A repository of agile method fragments,” in
Int. Conf. on Software Process. Springer, 2010, pp. 163-174.

F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaino, “Collaboration
tools for global software engineering,” IEEE software, vol. 27, no. 2,
p. 52, 2010.

2

=

4

=

[5]

[6

=

[71

8

—

[91
[10]

[11]

[12]

[13]

Authorized licensed use limited to: Universitaet Linz. Downloaded on March 08,2021 at 12:36:14 UTC from IEEE Xplore. Restrictions apply.

